Home » Media Center » Blog » Honoring African Americans in STEM

Blade Antennas & Their Advantages

July 2023

In the Aerospace Industry, when we think of blade antennas, we may visualize aerodynamic antennas that are typically mounted onto the exterior of an aircraft. However, the term “blade antenna” has a much broader description. In a previous post, we introduced blade antennas in relation to flight qualified antennas. In this post, we elaborate on what blade antennas are, as well as their advantages.

The term “blade antenna” doesn’t refer to a specific antenna design. Rather, it describes a class of antennas with certain characteristics:

1. Flat and Planar Structure. Blade antennas are typically designed with a flat, planar structure. The conducting elements of the antenna are placed on a flat surface, such as a printed circuit board (PCB), substrate, or metallic plate. This flat structure distinguishes blade antennas from other types of antennas that have three-dimensional or non-planar designs.

2. Thin and Low Profile. Blade antennas are characterized by their thin and low-profile construction.

3. Broadside Radiation Pattern. Blade antennas are often designed to have a broadside radiation pattern, which means that the majority of the energy is radiated perpendicular to the plane of the antenna. This radiation pattern makes them suitable for applications that require omnidirectional coverage or specific beamforming characteristics.

UVW-0430B
There are numerous benefits to using blade antennas, for both defense and commercial applications.

1. High Frequency Range. Blade antennas generally operate within the high-frequency range, typically in the ultra high frequency or microwave bands. They are commonly used in various communication systems, including wireless networks, mobile devices, satellite communication, and radar systems.

The UVW-0430B, also known as the UHF Dipole Blade Antenna, operates within frequencies between 400 MHz and 6000 MHz. Like most of JEM Engineering’s quick-turnaround blade antennas, the UVW-0430B is suitable for UAV, SIGINT, cellular, and sensor systems.

2. Relatively Small Size. Because blade antennas are generally low profile, compact, and lightweight, they can easily be integrated into electronic devices. Naturally, this means that they’re well-suited for applications where space is limited. For example, the UVW-0827, also known as the L/S Band Miniature Blade Antenna, is relatively weightless and is about 2 inches tall. Despite its small size, it boasts a wide frequency range, operating between 800 MHz and 3000 MHz. The UVW-1547, also known as the UAV Communications Antenna, operates within frequencies between 1500 MHz and 4700 MHz.

3. Affordability. Simple blade antennas can be fabricated using low-cost manufacturing processes, making them suitable for mass production.

UVW-0827 | 901-0128-000 | L/S Band Miniature Blade Antenna
Blade antennas come in many forms.

Depending on the specific application requirements, they can be designed in various shapes and configurations, including microstrip patch antennas, PIFAs, slot antennas, and planar dipole antennas.

In conclusion, blade antennas are favored in many applications due to their versatility, compactness, and cost-effectiveness. However, their performance characteristics, such as radiation pattern, gain, and bandwidth, are highly dependent on the specific design and configuration of the antenna. Therefore, it’s important to carefully consider their design to to ensure optimal performance in different applications.

Our experts at JEM Engineering can help you determine if any of our ready-to-ship airborne blade antennas are suitable for your application. Alternatively, we can develop new designs to perfectly fit your needs.

Latest Posts

STEM with JEM

STEM with JEM

Did you know that National STEM Day falls on the 8th of November each year? That’s because the abbreviation “NOV8” actually stands for “INNOVATE.”

read more
Reshaping Antenna Design with 3D Printing

Reshaping Antenna Design with 3D Printing

As we discussed in a previous post, before we can manufacture, we must prototype. For this step in the process, we are beginning to explore additive manufacturing, or as it’s more commonly known, 3D printing.

read more
An Overview of Unmanned Aerial Vehicles — and their Antennas

An Overview of Unmanned Aerial Vehicles — and their Antennas

An unmanned aerial vehicle, or UAV, refer to a vehicle that is able to fly remotely, either with some sort of controller or autonomously. An unmanned aircraft system, or UAS, includes not only the UAV, itself but also the person on the ground controlling the flight, as well as the system in place that connects the two of them.

read more